The Logic of Clue/Cluedo

Curtis Larsen

DSU-CIT

Fall 2013
1 The “Logic Physics” of the Game
 Definitions/Logic
 First Order Logic
 Propositional Logic
 Conjunctive Normal Form

2 The “Instance Logic” of the Game
 Definitions/Logic
 Conjunctive Normal Form

3 The “Questions” of the Game
 Definitions/Logic
 Conjunctive Normal Form
Definitions

• Each card identifies one item
• Each item is unique
• Each card is in exactly one location
• Each location may hold multiple cards
• There are three types of items: suspect, weapon, and room
• A location is either a player’s hand or the cellar
• The cellar location holds exactly one card of each type
• The goal of the game is to identify the three cards in the cellar
The “Logic Physics” of the Game

- Each card must be in exactly one location
- The cellar contains exactly one card of each type
- Each player, \(P_i \), holds \(N_i \) cards
First Order Logic Representation

Dictionary

- **Cellar**: The cellar location.
- **P_i**: The i^{th} player.
- **N_i**: The number of cards held by the i^{th} player.
- **L_j**: The j^{th} location, one of P_i or **Cellar**.
- **S_k**: The k^{th} card of type S, suspect.
- **W_l**: The l^{th} card of type W, weapon.
- **R_m**: The m^{th} card of type R, room.
- **$Holds(L, C)$**: The location L holds the card C.
First Order Logic Representation

- $\forall_{c,L_j} \text{Holds}(L_j, c) \iff \neg(\text{Holds}(L_0, c) \lor \text{Holds}(L_1, c) \lor \ldots \lor \text{Holds}(L_n, c))$
 where L_j is not included in the right side, c is a variable representing any R_k, W_i, or R_m.

- $\forall_{S_k} \text{Holds}(\text{Cellar}, S_k) \iff$
 $\neg(\text{Holds}(\text{Cellar}, S_0) \lor \text{Holds}(\text{Cellar}, S_1) \lor \ldots \lor \text{Holds}(\text{Cellar}, S_n))$
 S_k is not included on the right side.

- $\forall_{W_i} \text{Holds}(\text{Cellar}, W_i) \iff$
 $\neg(\text{Holds}(\text{Cellar}, W_0) \lor \text{Holds}(\text{Cellar}, W_1) \lor \ldots \lor \text{Holds}(\text{Cellar}, W_n))$
 W_i is not included on the right side.

- $\forall_{R_m} \text{Holds}(\text{Cellar}, R_m) \iff$
 $\neg(\text{Holds}(\text{Cellar}, R_0) \lor \text{Holds}(\text{Cellar}, R_1) \lor \ldots \lor \text{Holds}(\text{Cellar}, R_n))$
 R_m is not included on the right side.
Propositional Logic Representation

- L_0: The cellar location.
- P_i: The i^{th} player.
- N_i: The number of cards held by the i^{th} player.
- L_j: The j^{th} location, one of P_i or Cellar.
- $hL_j C$: The location L_j holds the card C.
- S_k: The k^{th} suspect card.
- W_l: The l^{th} weapon card.
- R_m: The m^{th} room card.
Propositional Logic Representation

- **$hL_j C \iff \neg (hL_0 C \lor hL_1 C \lor ... \lor hL_n C)$**
 where L_j is not included in the right side.

- **$hL_0 S_k \iff \neg (hL_0 S_0 \lor hL_0 S_0 \lor ... \lor hL_0 S_n)$**
 S_k is not included on the right side.

- **$hL_0 W_l \iff \neg (hL_0 W_0 \lor hL_0 W_0 \lor ... \lor hL_0 W_n)$**
 W_l is not included on the right side.

- **$hL_0 R_m \iff \neg (hL_0 R_0 \lor hL_0 R_0 \lor ... \lor hL_0 R_n)$**
 R_m is not included on the right side.
Conjunctive Normal Form Representation

- At most one of each card:
 \[\neg hL_i C \lor \neg hL_j C \]
 where all combinations of \(i, j \) are applied for each card, \(C \).

- At least one of each card:
 \[hL_0 C \lor hL_1 C \lor \ldots \lor hL_n C \]
 applied for each card, \(C \).

- At most one card of each type in the cellar
 \[\neg hL_0 T_i \lor \neg hL_0 T_j \]
 where all combinations of \(i, j \) are applied for each card type, \(T = S, W, R \).

- At least one card of each type in the cellar:
 \[hL_0 T_0 \lor hL_0 T_1 \lor \ldots \lor hL_0 T_n \]
 applied for each card type, \(T = S, W, R \).
Definitions

- Our player has a fixed set of cards in hand.
- Players may make suggestions or accusations.
- A suggestion is processed clockwise around the board until disproved or all other players have not been able to disprove.
- A player may disprove a suggestion, and the processing stops.
- A player must disprove a suggestion, if possible.
- A player may not be able to disprove a suggestion, so processing continues.
- An accusation may be correct or incorrect.
The “Instance Logic” of the Game

- If we know all of our player’s cards, then we also know which ones we don’t hold.
- Not disproving a suggestion proves a player doesn’t hold any of the cards.
- Disproving a suggestion proves a player holds at least one of the cards.
- If no player disproves a suggestion, either the suggester or the cellar holds each card.
- If a player’s accusation fails, then at least one of the cards is not in the cellar.
Conjunctive Normal Form Representation

- Player i holds card C: hL_iC
- Player i doesn’t hold card C: $\neg hL_iC$
- Player i doesn’t disprove S_k, W_l, R_m:
 $$(\neg hL_iS_k) \land (\neg hL_iW_l) \land (\neg hL_iR_m)$$
- Player i disproves S_k, W_l, R_m: $hL_iS_k \lor hL_iW_l \lor hL_iR_m$
- No player disproves S_k, W_l, R_m, suggested by player i:
 $$(hL_iS_k \lor hL_0S_k) \land (hL_iW_l \lor hL_0W_l) \land (hL_iR_m \lor hL_0R_m)$$
- Accusation S_k, W_l, R_m is false:
 $$(\neg hL_0S_k) \lor (\neg hL_0W_l) \lor (\neg hL_0R_m)$$
The “Questions” of the Game

• We want to know which card of each type is held by the cellar.
Conjunctive Normal Form Representation

- Cellar holds suspect card \(S_k: hL_0S_k \)
- Cellar holds weapon card \(W_i: hL_0W_i \)
- Cellar holds room card \(R_m: hL_0R_m \)